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Comments to the Author(s)/Editor(s) 

 
Summary: 
 
The authors propose a mathematical model for the growth of non-diffusive tumors based on energy 
conservation. The model takes into account the energy supply via the tumor microvasculature as well 
as the energy required for tumor maintenance and spatial expansion. The restricted energy supply 
leads to the well-known logistic growth law. Based on realistic parameter values found in the literature, 
the authors illustrate the impact of the various model parameters by means of simulations. 
 
 
Major points: 
 

1) Page 2, Line 44: The authors propose to illustrate their approach in the case of gliomas, 
suspectedly because numerical data were widely available. However, gliomas are highly 
infiltrative tumors, which invalidates the hypothesis of constant cell density among the tumor 
(Page 6, Line 8) and the biphasic approach adopted for the linear elastic model (Page 4, Lines 
48-51). The more suited reaction-diffusion models have been extensively used for glioma 
growth modelling, see for example in [1-4]. 
 
Whereas the aforementioned hypotheses may still hold for well-circumscribed (brain) tumors 
such as brain metastases, the numerical values used in the experiments may need to be 
adapted based on the literature. Or at least, if the order of magnitude of the parameters turned 
out to be similar, gliomas should not be mentioned as an example of application of this work. 
 
Also, it is not clear why the authors seek to apply this model exclusively to non-metastatic 
tumors on Page 6, Line 6. Brain metastases originating from other organs would on the 
contrary be more suited to the proposed model considering the remark hereabove. 
 

2) Page 4, Lines 14-15: The creation of new vessels to maintain a constant microvascular density 
as the tumor growth also requires energy, which is expected to increase over time since the 
tumor volume is proportional to the exponentially increasing number of cells. This could 
explain the inconsistency highlighted at the end of Comment 4). 
 

3) Page 4, Line 51, Equation (4a): The authors should provide a rationale for the linear 
dependency between 𝐸𝐸𝑝𝑝 and 𝐸𝐸𝑠𝑠. The energy rate required for the tumor volume expansion 
should indeed depend on the external pressure but not on the supplied rate of energy. 

 
Furthermore, the statement “It can be assumed that the change in volume of the normal brain 
tissue is directly proportional to the size of the tumor” on Lines 18-19 seems unsound. The 
correct statement would rather be that the infinitesimal decrease in volume of the normal 
brain is equal to the infinitesimal increase in the tumor volume as the whole brain volume can 
be considered constant due to the surrounding skull. 
 
A more suitable approach would be to consider the tumor as a spherical solid under constant 
pression 𝑝𝑝 due to the surrounding tissues. In first approximation, neglecting the tumor-
induced change in the external pressure, the work required for an increase d𝑉𝑉𝑇𝑇 in the tumor 
volume would be [5]: 
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d𝑤𝑤 = 𝑝𝑝d𝑉𝑉𝑇𝑇 
 
Considering an incompressible tumor of cell density 𝑛𝑛𝑇𝑇, the energy rate is then given by: 

 

𝐸𝐸𝑝𝑝 = d𝑤𝑤
d𝑡𝑡 = 𝑝𝑝 d𝑉𝑉𝑇𝑇

d𝑡𝑡 = 𝑝𝑝
𝑛𝑛𝑇𝑇

d𝑁𝑁𝑇𝑇
d𝑡𝑡  

 
With this approach, the energy required for tumor expansion is coupled to the growth rate 
and thus to the number of cells for an exponential or logistic growth. 

 
Nevertheless, this approach remains simplistic. The mechanical effects of tumor growth have 
been more extensively studied in the literature, for example in [6, 7]. A suitable level of 
modelling should be adopted here to accurately capture the process involved while being able 
to derive an analytical expression that can be fed with realistic numerical parameter values. 

 
4) Page 6, Lines 13-17, Equation (6a): The authors should provide a rationale for the linear 

dependency of the net growth rate in the fraction of energy available for the creation of new 
cells 

𝐸𝐸𝑔𝑔
𝐸𝐸𝑠𝑠

. 
 

More generally speaking, the problem of resource-dependent growth of cell populations has 
been extensively studied previously, for example in [8]. The main idea of these models is that 
the residual energy after subtraction of the energy required for cell maintenance can be used 
for growth, i.e. creation of new cells (and the compensation of the external pressure required 
for tumor expansion), rather than the energy ratio. In this respect, a quota-based model such 
as the one proposed by Droop [8, 9] may be more appropriate for the problem addressed by 
the authors.  

 
This model states that cell can only divide if it accumulated a certain quota 𝑄𝑄 (e.g. energy or 
more exactly glucose molecules) of resource larger than the subsistence quota 𝑞𝑞 (i.e. the 
minimum amount of resource required to maintain a cell). Based on experimental 
observations on algae, Droop proposed the following law (using the author’s notation): 
 

𝑑𝑑𝑁𝑁𝑇𝑇
𝑑𝑑𝑡𝑡 = 𝑔𝑔𝑁𝑁𝑇𝑇 (1 − 𝑞𝑞

𝑄𝑄) , if 𝑄𝑄 ≥ 𝑞𝑞 else 0 

 
where 𝑞𝑞 is the cell subsistence quota, 𝑄𝑄 is the cell quota, and the other symbols are defined 
as in the manuscript. 
 
The original work considered a closed system with fixed total amount of resource, but a fixed 
flux of resource can be considered as well, as suggested by the authors. Ignoring the effects of 
spatial expansion for which the modelling steps should be further justified (see Comment 2)), 
this would lead to: 
 

𝑑𝑑𝑄𝑄
𝑑𝑑𝑡𝑡 = 𝑑𝑑

𝑑𝑑𝑡𝑡 ( 𝜀𝜀𝑇𝑇
𝑁𝑁𝑇𝑇

) =
𝐸𝐸𝑠𝑠𝑁𝑁𝑇𝑇 − 𝜀𝜀𝑇𝑇𝑁𝑁𝑇𝑇𝑔𝑔 (1 − 𝑞𝑞

𝑄𝑄)
𝑁𝑁𝑇𝑇

2 = 𝐸𝐸𝑠𝑠
𝑁𝑁𝑇𝑇

− 𝑔𝑔(𝑄𝑄 − 𝑞𝑞) 

 
where 𝜀𝜀𝑇𝑇 = 𝑄𝑄𝑁𝑁𝑇𝑇 is the total energy of the system at time 𝑡𝑡 (supposedly entirely captured by 
all 𝑁𝑁𝑇𝑇 cells before being used for multiple purpose) and the other symbols are defined as in 
the manuscript. 
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Considering a quasi steady-state for the quota 𝑄𝑄 as in [8], we have: 
 

𝑄𝑄 = 𝐸𝐸𝑠𝑠 + 𝑞𝑞𝑔𝑔𝑁𝑁𝑇𝑇
𝑔𝑔𝑁𝑁𝑇𝑇

 

 
And then: 
 

𝑑𝑑𝑁𝑁𝑇𝑇
𝑑𝑑𝑡𝑡 = 𝑔𝑔𝑁𝑁𝑇𝑇 (1 −

𝑞𝑞𝑔𝑔𝑁𝑁𝑇𝑇
𝐸𝐸𝑠𝑠 + 𝑞𝑞𝑔𝑔𝑁𝑁𝑇𝑇

) = 𝑔𝑔𝑁𝑁𝑇𝑇 (1 −
𝑞𝑞𝑔𝑔𝑛𝑛𝑇𝑇

𝛼𝛼𝑠𝑠𝑠𝑠𝛼𝛼𝑠𝑠0𝐴𝐴𝑐𝑐𝑠𝑠 + 𝑞𝑞𝑔𝑔𝑛𝑛𝑇𝑇
) 

 
Note the strong similarity between the equation hereabove and Equation (6b) of the 
manuscript (ignoring the effects of space), in particular when defining 𝛼𝛼𝑠𝑠 = 𝑞𝑞𝑔𝑔 (units W/cell). 
However, the additional term of the denominator of the equation derived herein solves a 
major issue of Equation (6b), that is the net proliferation of tumor cells tends to -∞ (i.e. 
instantaneous death of all cells) as 𝛼𝛼𝑠𝑠𝑠𝑠𝛼𝛼𝑠𝑠0𝐴𝐴𝑐𝑐𝑠𝑠 tends to 0 (i.e. the energy supply is stopped). 
 
We see that, ignoring the effect of spatial expansion, the tumor has an exponential growth as 
long as the vasculature (and thus the energy supply) is proportional to the number of cells (see 
Equation (2d)), which is probably unrealistic. This issue may partly originate from the fact that 
creating new vessels also requires energy, which is not taken into account in the manuscript 
as pointed out in Comment 2). 
 

5) Page 6, Line 19: For consistency with Equation (6a), 𝑔𝑔 should not be seen as “the result of cell 
creation rate minus death rate” as stated by the authors. Indeed, if 

𝐸𝐸𝑔𝑔
𝐸𝐸𝑠𝑠

 becomes 0, Equation 
(6a) suggests a constant number of cells over time whereas it is expected to decrease due to 
natural cell death at constant rate. Instead, an additional death term which does not depend 
on the energy available for growth should be added. 
 

6) Pages 10-15: The presented results and discussion might change significantly considering the 
previous comments. 

 
 
Minor points: 

 
7) Page 1, Line 16: The formulation “creation of space” is confusing. “Tumor volume expansion” 

would be more appropriate. The same remark applies to Page 2, Line 35; Page 3, Lines 2, 25-
26 and 42; Page 4, Line 48 and Page 14, Line 53. 
 

8) Page 1, Lines 21-38: Parts of the results should be removed from the abstract as they make 
the main message unclear. On the other hand, the rederivation of the well-known logistic law, 
which seems to be a major finding of the study, may be mentioned. 
 

9) Page 2, Lines 16-17: “Among these Logistic growth and Gompertzian growth models are 
suitable for the study of tumor growth” should be rephrased as it discards the other two 
model types mentioned just before without justification. 

 
10) Page 5, Lines 50-51: For unit consistency, the units of 𝛼𝛼𝑛𝑛 should be mm³/cell instead of mm³. 

 
11) Page 6, Lines 29-32, Equation (6b): It could be interesting to rewrite the equation under its 

canonical form: 
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𝑑𝑑𝑁𝑁𝑇𝑇
𝑑𝑑𝑡𝑡 = 𝑟𝑟𝑁𝑁𝑇𝑇 (1 − 𝑁𝑁𝑇𝑇

𝐶𝐶 ) 
 
with 𝑟𝑟 being the actual maximum growth rate and 𝐶𝐶 the carrying capacity.  
 
By identification with Equation (6b), we have: 
 

𝑟𝑟 = (1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑔𝑔 

𝐶𝐶 =
(1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑛𝑛𝑇𝑇

𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣
 

 
In this way, the influence of the various parameters introduced by the authors on the actual 
maximum growth rate and the carrying capacity could be further discussed, which could 
greatly benefit the discussion and the whole study. 
 

12) Page 6, Lines 40-44: For consistency with Equation (1), it should be worth clarifying that 𝑑𝑑𝑁𝑁𝑇𝑇
𝑑𝑑𝑡𝑡 =

0 implies 𝐸𝐸𝑔𝑔 = 0 and the unchanged volume implies 𝐸𝐸𝑝𝑝 = 0, hence 𝐸𝐸𝑟𝑟 = 𝐸𝐸𝑠𝑠. 
 

13) Page 6, Line 46-53: “[…] 𝑁𝑁𝑇𝑇(𝑡𝑡) = 1 to 𝑁𝑁𝑇𝑇(𝑡𝑡) =  𝑁𝑁𝑇𝑇” should be “[…] 𝑁𝑁𝑇𝑇(𝟎𝟎) = 1 to 𝑁𝑁𝑇𝑇(𝑡𝑡) =
 𝑁𝑁𝑇𝑇”. 
 
Besides, for the sake of generality, it should be interesting to solve the equation for an arbitrary 
initial number of cells 𝑁𝑁𝑇𝑇(0) = 𝑁𝑁0. Based on the well-known solution of the logistic equation 
and the derivation of the actual growth rate 𝑟𝑟 and carrying capacity 𝐶𝐶 made in Comment 11), 
we then have: 
 

𝑁𝑁𝑇𝑇 = 𝐶𝐶𝑁𝑁0e𝑟𝑟𝑡𝑡

𝐶𝐶 + 𝑁𝑁0(e𝑟𝑟𝑡𝑡 − 1) =
(1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑵𝑵𝟎𝟎e𝑔𝑔(1−𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑡𝑡

(1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇) + 𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣
𝑛𝑛𝑇𝑇

𝑵𝑵𝟎𝟎(e𝑔𝑔(1−𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑡𝑡 − 1)
 

 
14) Page 7, Lines 10-18: This result comes trivially after noticing that the carrying capacity 𝐶𝐶 

verifies: 
 

𝐶𝐶 =
(1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑛𝑛𝑇𝑇

𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣
 

 
which is by definition the maximum number of cells that the system can hold. A more in-depth 
analysis of the impact of the parameters based on the properties of the logistic function after 
identification of the growth rate 𝑟𝑟 and carrying capacity 𝐶𝐶 (see Comment 11)) should be 
conducted instead. 

 
15) Page 7, Line 38-42, Equation (9):  For the sake of generality, it could be interesting to derive 

the value for an arbitrary initial number of cells 𝑁𝑁𝑇𝑇(0) = 𝑁𝑁0 based on the results in Comment 
11), we have: 
 

𝐶𝐶𝑁𝑁0e𝑟𝑟𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇99

𝐶𝐶 + 𝑁𝑁0(e𝑟𝑟𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇99 − 1) = 0.99𝐶𝐶 

⇔ 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇99 = 1
𝑟𝑟 log (99(𝐶𝐶 − 𝑁𝑁0)

𝑁𝑁0
) = 1

𝑔𝑔(1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇) log (
99 (1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇 − 𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣

𝑛𝑛𝑇𝑇
𝑵𝑵𝟎𝟎) 𝑛𝑛𝑇𝑇

𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣𝑵𝑵𝟎𝟎
) 



𝑑𝑑𝑁𝑁𝑇𝑇
𝑑𝑑𝑡𝑡 = 𝑟𝑟𝑁𝑁𝑇𝑇 (1 − 𝑁𝑁𝑇𝑇

𝐶𝐶 ) 
 
with 𝑟𝑟 being the actual maximum growth rate and 𝐶𝐶 the carrying capacity.  
 
By identification with Equation (6b), we have: 
 

𝑟𝑟 = (1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑔𝑔 

𝐶𝐶 =
(1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑛𝑛𝑇𝑇

𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣
 

 
In this way, the influence of the various parameters introduced by the authors on the actual 
maximum growth rate and the carrying capacity could be further discussed, which could 
greatly benefit the discussion and the whole study. 
 

12) Page 6, Lines 40-44: For consistency with Equation (1), it should be worth clarifying that 𝑑𝑑𝑁𝑁𝑇𝑇
𝑑𝑑𝑡𝑡 =

0 implies 𝐸𝐸𝑔𝑔 = 0 and the unchanged volume implies 𝐸𝐸𝑝𝑝 = 0, hence 𝐸𝐸𝑟𝑟 = 𝐸𝐸𝑠𝑠. 
 

13) Page 6, Line 46-53: “[…] 𝑁𝑁𝑇𝑇(𝑡𝑡) = 1 to 𝑁𝑁𝑇𝑇(𝑡𝑡) =  𝑁𝑁𝑇𝑇” should be “[…] 𝑁𝑁𝑇𝑇(𝟎𝟎) = 1 to 𝑁𝑁𝑇𝑇(𝑡𝑡) =
 𝑁𝑁𝑇𝑇”. 
 
Besides, for the sake of generality, it should be interesting to solve the equation for an arbitrary 
initial number of cells 𝑁𝑁𝑇𝑇(0) = 𝑁𝑁0. Based on the well-known solution of the logistic equation 
and the derivation of the actual growth rate 𝑟𝑟 and carrying capacity 𝐶𝐶 made in Comment 11), 
we then have: 
 

𝑁𝑁𝑇𝑇 = 𝐶𝐶𝑁𝑁0e𝑟𝑟𝑡𝑡

𝐶𝐶 + 𝑁𝑁0(e𝑟𝑟𝑡𝑡 − 1) =
(1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑵𝑵𝟎𝟎e𝑔𝑔(1−𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑡𝑡

(1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇) + 𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣
𝑛𝑛𝑇𝑇

𝑵𝑵𝟎𝟎(e𝑔𝑔(1−𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑡𝑡 − 1)
 

 
14) Page 7, Lines 10-18: This result comes trivially after noticing that the carrying capacity 𝐶𝐶 

verifies: 
 

𝐶𝐶 =
(1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑛𝑛𝑇𝑇

𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣
 

 
which is by definition the maximum number of cells that the system can hold. A more in-depth 
analysis of the impact of the parameters based on the properties of the logistic function after 
identification of the growth rate 𝑟𝑟 and carrying capacity 𝐶𝐶 (see Comment 11)) should be 
conducted instead. 

 
15) Page 7, Line 38-42, Equation (9):  For the sake of generality, it could be interesting to derive 

the value for an arbitrary initial number of cells 𝑁𝑁𝑇𝑇(0) = 𝑁𝑁0 based on the results in Comment 
11), we have: 
 

𝐶𝐶𝑁𝑁0e𝑟𝑟𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇99

𝐶𝐶 + 𝑁𝑁0(e𝑟𝑟𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇99 − 1) = 0.99𝐶𝐶 

⇔ 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇99 = 1
𝑟𝑟 log (99(𝐶𝐶 − 𝑁𝑁0)

𝑁𝑁0
) = 1

𝑔𝑔(1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇) log (
99 (1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇 − 𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣

𝑛𝑛𝑇𝑇
𝑵𝑵𝟎𝟎) 𝑛𝑛𝑇𝑇

𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣𝑵𝑵𝟎𝟎
) 

 
16) Page 9, Lines 17-18: As discussed in Comment 1), the example of gliomas may be unsuitable 

for the proposed model since these are highly infiltrative tumors with spatially variable cell 
density. The numerical values might be adjusted if other types of tumors are considered. 
 

17) Page 9, Lines 24-32: This relation can also be found using the definition of the maximum 
growth rate 𝑟𝑟: 

 
𝑟𝑟 = (1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑔𝑔 ≥ 0 

 
The greater or equal inequality symbol should be more appropriate for consistency with 
Equation (10c) 
 

18) Page 10, Lines 23-40 and Table2: The derived values of 𝑔𝑔 seem a bit too large compared to 
the literature. Indeed, considering the net growth rate of the logistic function: 
 

𝑟𝑟 = (1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑔𝑔 
 
we have, for 𝛼𝛼𝑛𝑛 = 4.687 × 10−6mm3, 𝑛𝑛𝑇𝑇 = 1.84 × 105mm-3, and 𝑔𝑔 = 7.457 × 10−5s-1, 𝑟𝑟 =
323.56yr-1. The literature on glioma growth modeling rather suggests rates in range 1.70-
50.29yr-1 [4, 10-13]. Some parameters used for the derivation of 𝑔𝑔 may have been 
misestimated. After possible corrections, relating the derived value of 𝑟𝑟 to the wide literature 
on glioma growth modeling (if the use of gliomas as an example can be motivated) could give 
more weight to the paper. 
 
Using 𝑔𝑔 = 1d-1 on Page 11 Lines 4-5 leads to 𝑟𝑟 = 50.22yr-1, which is more in accordance with 
the literature. But then, this choice of 𝑔𝑔 should be motivated with regard to Table2. 
 
Also, the value of 𝑔𝑔 is higher in LG than in HG in Table2, which is inconsistent (see also 
Comment 30)). 
 

19) Pages 10-12: Reminding the signification of the various symbols when they first appear would 
greatly facilitate the reading of the Results section. 
 

20) Page 11, Line 8: “Variation of 𝑁𝑁𝑇𝑇𝑇𝑇 and 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇99  with three values of 𝛼𝛼𝑝𝑝 is shown in Figure1(B).” 
should be changed to “Variation of 𝑁𝑁𝑇𝑇𝑇𝑇 and 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇99  with 𝜶𝜶𝒏𝒏 for three values of 𝛼𝛼𝑝𝑝 is shown 
in Figure1(B).” 
 

21) Page 11, Lines 15-23: These comments seem to be related to Figure1 (A) and should appear at 
Line 5 before presenting the results of Figure1 (B). 
 

22) Page 11, Lines 24-35: These are well known results of logistic growth and in fact reflect the 
influence of the growth rate 𝑟𝑟 and carrying capacity 𝐶𝐶 on the tumor volume/population. 
Orienting the presentation of the results towards how the model parameters affect the global 
𝑟𝑟 and 𝐶𝐶 would be more relevant since the reader could then be referred to the well-known 
properties of logistic laws. 
 

23) Page 12, Lines 8-13: Again, these results come trivially when noticing that the carrying capacity 
𝐶𝐶 = (1−𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑛𝑛𝑇𝑇

𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣
~𝑛𝑛𝑇𝑇 − 𝑛𝑛𝑇𝑇

2 for the other parameters kept constant. The same remark holds 

for the influence of 𝛼𝛼𝑝𝑝. 
 



 
16) Page 9, Lines 17-18: As discussed in Comment 1), the example of gliomas may be unsuitable 

for the proposed model since these are highly infiltrative tumors with spatially variable cell 
density. The numerical values might be adjusted if other types of tumors are considered. 
 

17) Page 9, Lines 24-32: This relation can also be found using the definition of the maximum 
growth rate 𝑟𝑟: 

 
𝑟𝑟 = (1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑔𝑔 ≥ 0 

 
The greater or equal inequality symbol should be more appropriate for consistency with 
Equation (10c) 
 

18) Page 10, Lines 23-40 and Table2: The derived values of 𝑔𝑔 seem a bit too large compared to 
the literature. Indeed, considering the net growth rate of the logistic function: 
 

𝑟𝑟 = (1 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑔𝑔 
 
we have, for 𝛼𝛼𝑛𝑛 = 4.687 × 10−6mm3, 𝑛𝑛𝑇𝑇 = 1.84 × 105mm-3, and 𝑔𝑔 = 7.457 × 10−5s-1, 𝑟𝑟 =
323.56yr-1. The literature on glioma growth modeling rather suggests rates in range 1.70-
50.29yr-1 [4, 10-13]. Some parameters used for the derivation of 𝑔𝑔 may have been 
misestimated. After possible corrections, relating the derived value of 𝑟𝑟 to the wide literature 
on glioma growth modeling (if the use of gliomas as an example can be motivated) could give 
more weight to the paper. 
 
Using 𝑔𝑔 = 1d-1 on Page 11 Lines 4-5 leads to 𝑟𝑟 = 50.22yr-1, which is more in accordance with 
the literature. But then, this choice of 𝑔𝑔 should be motivated with regard to Table2. 
 
Also, the value of 𝑔𝑔 is higher in LG than in HG in Table2, which is inconsistent (see also 
Comment 30)). 
 

19) Pages 10-12: Reminding the signification of the various symbols when they first appear would 
greatly facilitate the reading of the Results section. 
 

20) Page 11, Line 8: “Variation of 𝑁𝑁𝑇𝑇𝑇𝑇 and 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇99  with three values of 𝛼𝛼𝑝𝑝 is shown in Figure1(B).” 
should be changed to “Variation of 𝑁𝑁𝑇𝑇𝑇𝑇 and 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇99  with 𝜶𝜶𝒏𝒏 for three values of 𝛼𝛼𝑝𝑝 is shown 
in Figure1(B).” 
 

21) Page 11, Lines 15-23: These comments seem to be related to Figure1 (A) and should appear at 
Line 5 before presenting the results of Figure1 (B). 
 

22) Page 11, Lines 24-35: These are well known results of logistic growth and in fact reflect the 
influence of the growth rate 𝑟𝑟 and carrying capacity 𝐶𝐶 on the tumor volume/population. 
Orienting the presentation of the results towards how the model parameters affect the global 
𝑟𝑟 and 𝐶𝐶 would be more relevant since the reader could then be referred to the well-known 
properties of logistic laws. 
 

23) Page 12, Lines 8-13: Again, these results come trivially when noticing that the carrying capacity 
𝐶𝐶 = (1−𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑛𝑛𝑇𝑇

𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣
~𝑛𝑛𝑇𝑇 − 𝑛𝑛𝑇𝑇

2 for the other parameters kept constant. The same remark holds 

for the influence of 𝛼𝛼𝑝𝑝. 
 

24) Page 12, Lines 24-25: “The values of 𝑁𝑁𝑇𝑇𝑇𝑇 are decreased with the increase of 𝛼𝛼𝑛𝑛” should be 
“The values of 𝑁𝑁𝑇𝑇𝑇𝑇 are decreased with the increase of 𝜶𝜶𝒑𝒑”. 
 

25) Page 12, Lines 26-34 and Figure3 (D): Considering Equation (6b) for fixed values of 𝛼𝛼𝑛𝑛, 𝑛𝑛𝑇𝑇 and 
𝛼𝛼𝑝𝑝, varying 

𝐸𝐸𝑔𝑔
𝐸𝐸𝑠𝑠 𝑡𝑡=0

 is to vary 𝐾𝐾𝑣𝑣. Considering the definition of the carrying capacity 𝑁𝑁𝑇𝑇𝑇𝑇 =
(1−𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑛𝑛𝑇𝑇

𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣
 and Equation (6b), I would have expected that 𝑁𝑁𝑇𝑇𝑇𝑇~ 1

1− 𝐸𝐸𝑔𝑔
𝐸𝐸𝑠𝑠 𝑡𝑡=0

. Could the authors 

comment? 
 

26) Pages 12-15: A pragmatic reflection on how these results could be used to improve treatments 
and/or patient management could greatly benefit the discussion, especially for a journal in 
applied sciences.  A few words and the limitations of the approach adopted should also be 
added, especially as several model design steps are not sufficiently motivated. 

 
27) Page 12, Lines 47-48: With regard to Comment 4), a reasoning based on the residual (not 

fraction of) energy remaining to growth should be more appropriate. 
 

28) Page 13, Lines 37-41: According to Equation (5a), the initial energy ratio would be rather: 
 

𝐸𝐸𝑔𝑔
𝐸𝐸𝑠𝑠 𝑡𝑡=0

= 0.5 −
𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣

𝑛𝑛𝑇𝑇
 

 
since  𝑁𝑁𝑇𝑇(0) = 1 (Page 6, Line 46). Could the author comment? 
 

29) Page 14, Lines 33-35: As pointed out in Comment 1), gliomas are highly infiltrative tumors with 
spatially varying cell density, hence the mean 𝑛𝑛𝑇𝑇 is not very informative. 
 

30) Page 14, Lines 46-49: “The intrinsic growth rate g resembles the mitotic rate, was found more 
in high grades than low grades for the same values of 𝑉𝑉𝑇𝑇𝑇𝑇, 𝛼𝛼𝑝𝑝, and 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇99  as presented in 
Table5.”: the opposite is shown in Table2, as pointed out in Comment 18). 

 
31) Page 15, Lines 12-25: The paragraph would be more suited to the discussion section. 

 
32) Page 15, Lines 14-17: The statement that the “larger variations in nuclear size, shape, and 

nuclear to cytoplasm” is a consequence of the cells not “giving much attention to its 
maintenance” should be supported by a reference as it does not seem obvious. 

 
33) Page 15, Line 18: What do the authors mean by “a tumor could be trained”? 

 
34) Pages 21 and 23, Figures 1 and 3: The units of the cell population (i.e. “(cells)”) should be 

specified for more clarity. 
 

35) Page 19, Table3: What is the meaning of “-ve”? 
 
 
Conclusion: 
 
The approach of coupling a classical exponential growth model to the restrictions of energy supply via 
the microvasculature and the energy requirements for spatial expansion via an elastic model is 
interesting, especially since these restrictions yields the well-known logistic law. Nevertheless, several 
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25) Page 12, Lines 26-34 and Figure3 (D): Considering Equation (6b) for fixed values of 𝛼𝛼𝑛𝑛, 𝑛𝑛𝑇𝑇 and 
𝛼𝛼𝑝𝑝, varying 

𝐸𝐸𝑔𝑔
𝐸𝐸𝑠𝑠 𝑡𝑡=0

 is to vary 𝐾𝐾𝑣𝑣. Considering the definition of the carrying capacity 𝑁𝑁𝑇𝑇𝑇𝑇 =
(1−𝛼𝛼𝑛𝑛𝑛𝑛𝑇𝑇)𝑛𝑛𝑇𝑇

𝛼𝛼𝑝𝑝𝐾𝐾𝑣𝑣
 and Equation (6b), I would have expected that 𝑁𝑁𝑇𝑇𝑇𝑇~ 1

1− 𝐸𝐸𝑔𝑔
𝐸𝐸𝑠𝑠 𝑡𝑡=0

. Could the authors 

comment? 
 

26) Pages 12-15: A pragmatic reflection on how these results could be used to improve treatments 
and/or patient management could greatly benefit the discussion, especially for a journal in 
applied sciences.  A few words and the limitations of the approach adopted should also be 
added, especially as several model design steps are not sufficiently motivated. 

 
27) Page 12, Lines 47-48: With regard to Comment 4), a reasoning based on the residual (not 

fraction of) energy remaining to growth should be more appropriate. 
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since  𝑁𝑁𝑇𝑇(0) = 1 (Page 6, Line 46). Could the author comment? 
 

29) Page 14, Lines 33-35: As pointed out in Comment 1), gliomas are highly infiltrative tumors with 
spatially varying cell density, hence the mean 𝑛𝑛𝑇𝑇 is not very informative. 
 

30) Page 14, Lines 46-49: “The intrinsic growth rate g resembles the mitotic rate, was found more 
in high grades than low grades for the same values of 𝑉𝑉𝑇𝑇𝑇𝑇, 𝛼𝛼𝑝𝑝, and 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇99  as presented in 
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31) Page 15, Lines 12-25: The paragraph would be more suited to the discussion section. 

 
32) Page 15, Lines 14-17: The statement that the “larger variations in nuclear size, shape, and 

nuclear to cytoplasm” is a consequence of the cells not “giving much attention to its 
maintenance” should be supported by a reference as it does not seem obvious. 

 
33) Page 15, Line 18: What do the authors mean by “a tumor could be trained”? 

 
34) Pages 21 and 23, Figures 1 and 3: The units of the cell population (i.e. “(cells)”) should be 

specified for more clarity. 
 

35) Page 19, Table3: What is the meaning of “-ve”? 
 
 
Conclusion: 
 
The approach of coupling a classical exponential growth model to the restrictions of energy supply via 
the microvasculature and the energy requirements for spatial expansion via an elastic model is 
interesting, especially since these restrictions yields the well-known logistic law. Nevertheless, several 
modelling steps are not sufficiently justified and seem unsound. I would not recommend rejection 
beforehand since a valuable effort has been made to derive realistic parameter values and the 
subsequent analyses are of interest, though they should be further commented on a practical cancer 
management aspect. However, revisions and/or further justifications are required for the model 
equations, which may in turn change the results and conclusion of the present study. 
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